2714: 麦森数
内存限制:128 MB
时间限制:1.000 S
评测方式:文本比较
命题人:
提交:11
解决:5
题目描述
形如2P-1的素数称为麦森数,这时P一定也是个素数。但反过来不一定,即如果P是个素数,2P-1不一定也是素数。到1998年底,人们已找到了37个麦森数。最大的一个是P=3021377,它有909526位。麦森数有许多重要应用,它与完全数密切相关。任务:输入P(1000<P<3100000),计算2P-1的位数和最后500位数字(用十进制高精度数表示)
输入
一个整数P(1000<P<3100000)
输出
第一行:十进制高精度数2P-1的位数。
第2-11行:十进制高精度数2P-1的最后500位数字。(每行输出50位,共输出10行,不足500位时高位补0)
不必验证2P-1与P是否为素数。
样例输入 复制
1279
样例输出 复制
386
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000104079321946643990819252403273640855
38615262247266704805319112350403608059673360298012
23944173232418484242161395428100779138356624832346
49081399066056773207629241295093892203457731833496
61583550472959420547689811211693677147548478866962
50138443826029173234888531116082853841658502825560
46662248318909188018470682222031405210266984354887
32958028878050869736186900714720710555703168729087
提示
十进制正整数n的位数为int(log10(n))+1
a^n = a^(n/2)*a^(n/2)*f(a),其中f(a) = 1(n%2==0)或f(a) = a(n%2==1)